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Background & Research Goral (1/5)

� In the fileds of AI and NLU, 
some applications need inference rules or knowledge of 
causal relations.
�Question answering system
�Dialog system

�Constructing causal models (causality detectors)
for acquiring knowledge of causal relations is one central 
issue.
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Background & Research Goral (2/5)

�Causality detector based on a causal model
�Input:    an event pair

�Extracted from text documents

�Output: Yes/No label
�Yes: Holding causal relations 

between the input event pair

�No:  Not holding
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Background & Research Goral (3/5)

Although 
the concept “causal relation” is difficult to understand,                                    

�Causal relations are assumed to be 
a subclass of 
general dependency relations. 

�Causal models need to 
capture the dependency information between (input) event pairs.

dep. info.
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Background & Research Goral (4/5)

�Two approaches for capturing dependency info. 
�Cue-phrase-based approach

�Using cue-phrases such as “because” and “since”
�Unable to treat event pairs without cue phrases 
�Medium precision, but very low coverage

�Statistical approach
�Using co-occurrence statistics of event pairs
�Independent of cue phrases
�Keeping precision, and achieving higher coverage

dep. info.



Background & Research Goral (5/5)

�[Chang et al. 2004] 
�One of the state-of-the art statistical models for

causality detection
�Based on naïve bayes assumption
�Hard to capture the dependency info

» Critical to improve the performance of the causality detection

Our research goal is to resolve this problem.
We propose new statistical models for causality detection.



New models (1/5)

�Expanded versions of the statistical co-occurrence 
models proposed by [Hofmann et al. 1998]

We adopted the co-occurrence models as the bases of 
the new models from the observation:

If two events are holing causal relation, 
these events tend to co-occur in text. 



New models -- [Hofmann et al. 1998]

�Aspect
�Graphical representation of statistical 

dependency

�Z represents semantic clusters shared by X and Y.

�The dependency info. can be captured through Z.
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X : cause event (observed)

Y : effect event (observed)

Z : latent variable (unobserved)



New models -- [Hofmann et al. 1998]

�Product

�Almost the same as aspect,

�Differences
�Two latent variables Z and Z , and
�Statistical dependency between them
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New models -- [Hofmann et al. 1998]

�Two statistical co-occurrence models
�Aspect
�Product

To summarize, these models
�Able to incorporate dependency 

information via latent variable(s),
�But, unable to treat causality information

(Yes/No label).



We introduce a random variable C to 
Aspect and Product models.

(The solution is direct and very simple !!)

�Expanded-aspect
�Expanded-product

Causality information =
(Yes/No label)

Output: Yes/No label
Yes: Holding causal relations 

between the input event pair
No:  Not holding



New models (2/5)

Expanded-aspect
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New models (3/5)

�Causality detector based on the new model
�Input: 
�Output:
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New models (4/5)

�Causality detector based on the new model
�Input: 
�Output:

expanded-aspect

expanded-product

P( cm | x , y )



New models (5/5)

�Parameter estimation of the models
�Maximum likelihood estimates from both a set of event 

pairs             and a set of triplets

�Use EM algorithm [Dempster et al. 1977]
�Follow the methods [Nigam et al. 2000] and [Hofmann 2001]

Yes/No label



Experiment

� Effectiveness of incorporating dependency info. 
�4 models

�Expanded-aspect, Expanded-product
� 2-term NB [Mitchell 1997], Latent NB [Zhang et al. 2004]

» Baseline models. No dependency info.

�Data, Japanese newspaper text
�A set of verb-pair which has a syntactic dependency relation
� 400 triplets extracted form an annotated corpus [Inui et al. 2005]
� 4 sets of event pairs (0 pairs / 100 pairs / 1,000 pairs / 10,000 pairs)

�5-fold cross validation
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Experiment

� Effectiveness of incorporating dependency info. 
�4 models

�Expanded-aspect, Expanded-product
� 2-term NB [Mitchell 1997], Latent NB [Zhang et al. 2004]

» Baseline models. No dependency info.

�Data
� Japanese newspaper text

» 400 triplets [Inui et al. 2005]
» Event pairs (0 pairs / 100 pairs / 1,000 pairs / 10,000 pairs)
» Verb-pair which has a syntactic dependency relation

(A precise modeling of events will be addressed in the future)

�5-fold cross validation



Experiment
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Conclusion

� We proposed statistical models for 
detecting causality between an input event pair

� Our causal models
�Based on statistical co-occurrence models
�Kinds of latent variable models
�Able to treat supervised label information via a class variable

� We demonstrated that our models
�Outperformed the baseline models, and 
�Achieved .678 F-measure value



Thank you!


