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Abstract
This paper 1 explores two directions for the

next step beyond the state of the art of statis-
tical parsing: probabilistic partial parsing and
committee-based decision making. Probabilis-
tic partial parsing is a probabilistic extension of
the existing notion of partial parsing, which en-
ables �ne-grained arbitrary choice on the trade-
o� between accuracy and coverage. Committee-
based decision making is to combine the out-
puts from di�erent systems to make a better
decision. While various committee-based tech-
niques for NLP have recently been investigated,
they would need to be further extended so as
to be applicable to probabilistic partial pars-
ing. Aiming at this coupling, this paper gives
a general framework to committee-based deci-
sion making, which consists of a set of weight-
ing functions and a combination function, and
discusses how it can be coupled with probabilis-
tic partial parsing. Our experiments have so far
been producing promising results.

1 Introduction
There have been a number of attempts to use

statistical techniques to improve parsing perfor-
mance. While this goal has been achieved to a
certain degree given the increasing availability
of large tree banks, the remaining room for the

1[note for revision] The results of the experiments re-
ported in the original version of this paper have been
found partly invalid: While the (total) accuracy achieved
by KNP (Kurohashi et al., 1994) for our test data is
wrongly reported to be 87.25%, the actual accuracy it
achieves is 91.25%. We apologize deeply to the creators
of the parser for assessing the performance of KNP im-
properly. This paper is a revised version of the paper,
in which every invalid description is annotated with a
footnote. Readers are NOT expected to refer to

any result related to KNP shown in the body of

this paper.

improvement appears to be getting saturated
as long as only statistical techniques are taken
into account. This paper explores two directions
for the next step beyond the state of the art of
statistical parsing: probabilistic partial parsing
and committee-based decision making.

Probabilistic partial parsing is a probabilistic
extension of the existing notion of partial pars-
ing ( e.g. (Jensen et al., 1993)) where a parser
selects as its output only a part of the parse tree
that are probabilistically highly reliable. This
decision-making scheme enables a �ne-grained
arbitrary choice on the trade-o� between ac-
curacy and coverage. Such trade-o� is impor-
tant since there are various applications that re-
quire reasonably high accuracy even sacri�cing
coverage. A typical example is the paraphras-
ing task embedded in summarization, sentence
simpli�cation (e.g. (Carroll et al., 1998)), etc.
Enabling such trade-o� choice will make state-
of-the-art parsers of wider application. Partial
parsing has also been proven useful for boot-
strapping learning.

One may suspect that the realization of par-
tial parsing is a trivial matter in probabilistic
parsing just because a probabilistic parser in-
herently has the notion of \reliability" and thus
has the trade-o� between accuracy and cover-
age. However, there has so far been surpris-
ingly little research focusing on this matter and
almost no work that evaluates statistical parsers
according to their coverage-accuracy (or recall-
precision) curves. Taking the signi�cance of
partial parsing into account, therefore in this
paper, we evaluate parsing performance accord-
ing to coverage-accuracy curves.

Committee-based decision making is to com-
bine the outputs from several di�erent systems
(e.g. parsers) to make a better decision. Re-
cently, there have been various attempts to ap-



ply committee-based techniques to NLP tasks
such as POS tagging (Halteren et al., 1998;
Brill et al., 1998), parsing (Henderson and
Brill, 1999), word sense disambiguation (Peder-
sen, 2000), machine translation (Frederking and
Nirenburg, 1994), and speech recognition (Fis-
cus, 1997). Those works empirically demon-
strated that combining di�erent systems often
achieved signi�cant improvements over the pre-
vious best system.
In order to couple those committee-based

schemes with probabilistic partial parsing, how-
ever, one would still need to make a further ex-
tension. Aiming at this coupling, in this paper,
we consider a general framework of committee-
based decision making that consists of a set
of weighting functions and a combination func-
tion, and discuss how that framework enables
the coupling with probabilistic partial parsing.
To demonstrate how it works, we report the re-
sults of our parsing experiments on a Japanese
tree bank.

2 Probabilistic partial parsing
2.1 Dependency probability
In this paper, we consider the task of decid-

ing the dependency structure of a Japanese in-
put sentence. Note that, while we restrict our
discussion to analysis of Japanese sentences in
this paper, what we present below should also
be straightforwardly applicable to more wide-
ranged tasks such as English dependency anal-
ysis just like the problem setting considered by
Collins (1996).
Given an input sentence s as a sequence of

Bunsetsu-phrases (BPs)2, b1 b2 : : : bn, our task
is to identify their inter-BP dependency struc-
ture R = fr(bi; bj)ji = 1; : : : ; ng, where r(bi; bj)
denotes that bi depends on (or modi�es) bj .
Let us consider a dependency probability (DP),
P (r(bi; bj)js), a probability that r(bi; bj) holds
in a given sentence s: 8i:

P
j
P (r(bi; bj)js) = 1.

2.2 Estimation of DPs
Some of the state-of-the-art probabilistic lan-

guage models such as the bottomup models
P (Rjs) proposed by Collins (1996) and Fujio

2A bunsetsu phrase (BP) is a chunk of words con-
sisting of a content word (noun, verb, adjective, etc.)
accompanied by some functional word(s) (particle, aux-
iliary, etc.). A Japanese sentence can be analyzed as a
sequence of BPs, which constitutes an inter-BP depen-
dency structure

et al. (1998) directly estimate DPs for a given
input, whereas other models such as PCFG-
based topdown generation models P (R; s) do
not (Charniak, 1997; Collins, 1997; Shirai et al.,
1998). If the latter type of models were totally
excluded from any committee, our committee-
based framework would not work well in prac-
tice. Fortunately, however, even for such a
model, one can still estimate DPs in the follow-
ing way if the model provides the n-best depen-
dency structure candidates coupled with prob-
abilistic scores.
Let Ri be the i-th best dependency structure

(i = 1; : : : ; n) of a given input s according to a
given model, and let RH be a set of Ri. Then,
P (r(bi; bj)js) can be estimated by the following
approximation equation:

P (r(bi; bj)js) �
P
r

RH

PRH

(1)

where PRH
is the probability mass of R 2 RH ,

and P
r

RH
is the probability mass of R 2 RH

that supports r(bi; bj). The approximation er-

ror � is given by � �
PR�PRH

PR
, where PR is the

probability mass of all the dependency struc-
ture candidates for s (see (Poole, 1993) for the
proof). This means that the approximation er-
ror is negligible if PRH

is su�ciently close to
PR, which holds for a reasonably small number
n in most cases in practical statistical parsing.

2.3 Coverage-accuracy curves
We then consider the task of selecting depen-

dency relations whose estimated probability is
higher than a certain threshold � (0 < � � 1).
When � is set to be higher (closer to 1.0), the
accuracy is expected to become higher, while
the coverage is expected to become lower, and
vice versa. Here, coverage C and accuracy A

are de�ned as follows:

C =
# of the decided relations

# of all the relations in the test set
(2)

A =
# of the correctly decided relations

# of the decided relations
(3)

Moving the threshold � from 1.0 down to-
ward 0.0, one can obtain a coverage-accuracy
curve (C-A curve). In probabilistic partial pars-
ing, we evaluate the performance of a model
according to its C-A curve. A few examples
are shown in Figure 1, which were obtained
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Figure 1: C-A curves

in our experiment (see Section 4). Obviously,
Figure 1 shows that model A outperformed the
other two. To summarize a C-A curve, we use
the 11-point average of accuracy (11-point ac-
curacy, hereafter), where the eleven points are
C = 0:5; 0:55; : : : ; 1:0. The accuracy of total
parsing corresponds to the accuracy of the point
in a C-A curve where C = 1:0. We call it total
accuracy to distinguish it from 11-point accu-
racy. Note that two models with equal achieve-
ments in total accuracy may be di�erent in 11-
point accuracy. In fact, we found such cases in
our experiments reported below. Plotting C-A
curves enable us to make a more �ne-grained
performance evaluation of a model.

3 Committee-based probabilis-
tic partial parsing

We consider a general scheme of committee-
based probabilistic partial parsing as illustrated
in Figure 2. Here we assume that each commit-
tee member Mk (k = 1; : : : ;m) provides a DP
matrix PMk

(r(bi; bj)js) (bi; bj 2 s) for each in-
put s. Those matrices are called input matrices,
and are given to the committee as its input.

A committee consists of a set of weighting
functions and a combination function. The role
assigned to weighting functions is to standardize
input matrices. The weighting function associ-
ated with model Mk transforms an input ma-
trix given by Mk to a weight matrix WMk

. The
majority function then combines all the given
weight matrices to produce an output matrix O,
which represents the �nal decision of the com-
mittee. One can consider various options for
both functions.

3.1 Weighting functions

We have so far considered the following three
options.
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Figure 3: P-A curves

Simple The simplest option is to do nothing:

w
Mk

ij
= PMk

(r(bi; bj)js) (4)

where w
Mk

ij
is the (i; j) element of WMk

.

Normal A bare DP may not be a precise es-
timation of the actual accuracy. One can see
this by plotting probability-accuracy curves (P-
A curves) as shown in Figure 3. Figure 3 shows
that model A tends to overestimate DPs, while
model C tends to underestimate DPs. This
means that if A and C give di�erent answers
with the same DP, C's answer is more likely
to be correct. Thus, it is not necessarily a
good strategy to simply use given bare DPs in
weighted majority. To avoid this problem, we
consider the following weighting function:

w
Mk

ij
= �

Mk

i
AMk

(PMk
(r(bi; bj)js)) (5)

where AMk
(p) is the function that returns the

expected accuracy of Mk's vote with its depen-

dency probability p, and �
Mk

i
is a normalization

factor. Such a function can be trained by plot-
ting a P-A curve for training data. Note that
training data should be shared by all the com-
mittee members. In practice, for training a P-A
curve, some smoothing technique should be ap-
plied to avoid over�tting.



Class The standardization process in the
above option Normal can also be seen as an
e�ort for reducing the averaged cross entropy
of the model on test data. Since P-A curves
tend to defer not only between di�erent mod-
els but also between di�erent problem classes,
if one incorporates some problem classi�cation
into (5), the averaged cross entropy is expected
to be reduced further:

w
Mk

ij
= �

Mk

i
AMkCbi

(PMk
(r(bi; bj)js)) (6)

where AMkCbi
(p) is the P-A curve of model Mk

only for the problems of class Cbi in training

data, and �
Mk

i
is a normalization factor. For

problem classi�cation, syntactic/lexical features
of bi may be useful.

3.2 Combining functions
For combination functions, we have so far con-

sidered only simple weighted voting, which av-
erages the given weight matrices:

oij =
1

m

mX
k=1

w
Mk

ij
(7)

where oij is the (i; j) element of O.
Note that the committee-based partial pars-

ing framework presented here can be seen as
a generalization of the previously proposed
voting-based techniques in the following re-
spects:

(a) A committee accepts probabilistically para-
meterized votes as its input.

(d) A committee accepts multiple voting (i.e. it
allow a committee member to vote not only
to the best-scored candidate but also to all
other potential candidates).

(c) A committee provides a means for standard-
izing original votes.

(b) A committee outputs a probabilistic distri-
bution representing a �nal decision, which
constitutes a C-A curve.

For example, none of simple voting techniques
for word class tagging proposed by van Hal-
teren et al. (1998) does not accepts multiple
voting. Henderson and Brill (1999) examined
constituent voting and naive Bayes classi�ca-
tion for parsing, obtaining positive results for
each. Simple constituent voting, however, does
not accept parametric votes. While Naive Bayes
seems to partly accept parametric multiple vot-
ing, it does not consider either standardization
or coverage/accuracy trade-o�.

Table 1: The total / 11-point accuracy achieved

by each individual model
total 11-point

A 0.8974 0.9607

B 0.8551 0.9281

C 0.8586 0.9291

D 0.8470 0.9266

E 0.7885 0.8567

4 Experiments
4.1 Settings
We conducted experiments using the follow-

ing �ve statistical parsers:

� KANA (Ehara, 1998): a bottom-up model
based on maximum entropy estimation.
Since dependency score matrices given by
KANA have no probabilistic semantics, we
normalized them for each row using a cer-
tain function manually tuned for this parser.

� CHAGAKE (Fujio et al., 1998): an exten-
sion of the bottom-up model proposed by
Collins (Collins, 1996).

� Kanayama's parser (Kanayama et al., 1999):
a bottom-up model coupled with an HPSG.

� Shirai's parser (Shirai et al., 1998): a top-
down model incorporating lexical collocation
statistics. Equation (1) was used for estimat-
ing DPs.

� Peach Pie Parser (Uchimoto et al., 1999):
a bottom-up model based on maximum en-
tropy estimation.

Note that these models were developed fully
independently of each other, and have signi�-
cantly di�erent characters (for a comparison of
their performance, see Table 1). In what fol-
lows, these models are referred to anonymously.
For the source of the training/test set, we

used the Kyoto corpus (ver.2.0) (Kurohashi et
al., 1997), which is a collection of Japanese
newspaper articles annotated in terms of word
boundaries, POS tags, BP boundaries, and
inter-BP dependency relations. The corpus
originally contained 19,956 sentences. To make
the training/test sets, we �rst removed all the
sentences that were rejected by any of the above
�ve parsers (3,146 sentences). For the remain-
ing 16,810 sentences, we next checked the con-
sistency of the BP boundaries given by the
parsers since they had slightly di�erent crite-
ria for BP segmentation from each other. In
this process, we tried to recover as many in-
consistent boundaries as possible. For example,



0.95

0.955

0.96

0.965

0.97

A
B

A
C

A
D

A
E

A
B

C

A
C

D

A
C

E

A
D

E

A
B

C
D

A
B

C
D

E

Simple Normal Class

A : 0.9607

Figure 4: 11-point accuracy: A included

we found there were quite a few cases where
a parser recognized a certain word sequence as
a single BP, whereas some other parser recog-
nized the same sequence as two BPs. In such
a case, we regarded that sequence as a single
BP under a certain condition. As a result, we
obtained 13,990 sentences that can be accepted
by all the parsers with all the BP boundaries
consistent 3. We used this set for training and
evaluation.

For closed tests, we used 11,192 sentences
(66,536 BPs4) for both training and tests.
For open tests, we conducted �ve-fold cross-
validation on the whole sentence set.

For the classi�cation of problems, we man-
ually established the following twelve classes,
each of which is de�ned in terms of a certain
morphological pattern of depending BPs:

1. nominal BP with a case marker \wa (topic)"

2. nominal BP with a case marker \no (POS)"

3. nominal BP with a case marker \ga (NOM)"

4. nominal BP with a case marker \o (ACC)"

5. nominal BP with a case marker \ni (DAT)"

6. nominal BP with a case marker \de (LOC/: : :)"

7. nominal BP (residue)

3In the BP concatenation process described here,
quite a few trivial dependency relations between neigh-
boring BPs were removed from the test set. This made
our test set slightly more di�cult than what it should
have been.

4This is the total number of BPs excluding the right-
most two BPs for each sentence. Since, in Japanese, a
BP always depends on a BP following it, the right-most
BP of a sentence does not depend on any other BP, and
the second right-most BP always depends on the right-
most BP. Therefore, they were not seen as subjects of
evaluation.
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8. adnominal verbal BP

9. verbal BP (residue)

10. adverb

11. adjective

12. residue

4.2 Results and discussion

Table 1 shows the total/11-point accuracy of
each individual model. The performance of each
model widely ranged from 0.96 down to 0.86
in 11-point accuracy. Remember that A is the
optimal model, and there are two second-best
models, B and C, which are closely comparable.
In what follows, we use these achievements as
the baseline for evaluating the error reduction
achieved by organizing a committee.

The performance of various committees is
shown in Figure 4 and 5. Our primary inter-
est here is whether the weighting functions pre-
sented above e�ectively contribute to error re-
duction. According to those two �gures, al-
though the contribution of the function Nor-

mal were nor very visible, the function Class

consistently improved the accuracy. These re-
sults can be a good evidence for the important
role of weighting functions in combining parsers.
While we manually built the problem classi�ca-
tion in our experiment, automatic classi�cation
techniques will also be obviously worth consid-
ering.

We then conducted another experiment to ex-
amine the e�ects of multiple voting. One can
straightforwardly simulate a single-voting com-
mittee by replacing wij in equation (7) with w

0

ij

given by:

w
0

ij =

�
wij (if j = argmaxk wik)

0 (otherwise)
(8)
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The results are shown in Figure 7, which
compares the original multi-voting committees
and the simulated single-voting committees.
Clearly, in our settings, multiple voting signif-
icantly outperformed single voting particularly
when the size of a committee is small.

The next issues are whether a committee al-
ways outperform its individual members, and if
not, what should be considered in organizing a
committee. Figure 4 and 5 show that commit-
tees not including the optimal model A achieved
extensive improvements, whereas the merit of
organizing committees including A is not very
visible. This can be partly attributed to the
fact that the competence of the individual mem-
bers widely diversed, and A signi�cantly outper-
forms the other models.

Given the good error reduction achieved
by committees containing comparable members
such as BC, BD and BCD, however, it should be
reasonable to expect that a committee includ-
ing A would achieve a signi�cant improvement if
another nearly optimal model was also incorpo-
rated. To empirically prove this assumption, we
conducted another experiment, where we add
another parser KNP (Kurohashi et al., 1994)
to each committee that appears in Figure 4.
KNP is much closer to model A in total ac-
curacy than the other models (0.8725 in total
accuracy) 5. However, it does not provide DP

5[note for revision] 0.8725 is the total accuracy
achieved by KNP, but with an unnecessary experimental
option setting wrongly speci�ed in execution. With the
proper setting, KNP achieves a much higher accuracy,
0.9125, for the same test data. KNP thus outperforms
model A, in actual fact.
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matrices since it is designed in a rule-based fash-
ion | the current version of KNP provides only
the best-preferred parse tree for each input sen-
tence without any scoring annotation. We thus
let KNP to simply vote its total accuracy. The
results are shown in Figure 6. This time all the
committees achieved signi�cant improvements,
with the maximum error reduction rate up to
31% 6.

As suggested by the results of this experiment
with KNP, our scheme allows a rule-based non-
parametric parser to play in a committee pre-
serving its ability to output parametric DP ma-
trices. To push the argument further, suppose
a plausible situation where we have an optimal
but non-parametric rule-based parser and sev-
eral suboptimal statistical parsers. In such a
case, our committee-based scheme may be able
to organize a committee that can provide DP

6[note for revision] Figure 6 shows the gains in 11-
point accuracy achieved by combining the statistical
parsers in hand and KNP with the improper option set-
ting as mentioned above. With the proper setting, the
best achieved accuracy turned out to be up to 0.9753 (11-
point accuracy). We should note, however, that KNP
with the proper setting outpermed the optimal statisti-
cal parser A, and therefore the baseline of the committees
should be not at A's accuracy but at KNP's accuracy.
Since we cannot evaluate the 11-point accuracy of KNP,
the best we can do is to make comparisons in total ac-
curacy. According to our experiment, the best achieved
total accuracy of the committee is 0.9200, and the gain
(0.0075 points from the baseline) is much less signi�-
cant than those shown in Figure 6. Given this result, we
need to totally reconsider and change the discussion in
this paragraph.
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matrices while preserving the original total ac-
curacy of the rule-based parser. To see this, we
conducted another small experiment, where we
combined KNP with each of C and D, both of
which are less competent than KNP. The result-
ing committees successfully provided reasonable
P-A curves as shown in Figure 8, while even
further improving the original total accuracy of
KNP (0.8725 to 0.8868 for CF and 0.8860 for
DF)7. Furthermore, the committees also gained
the 11-point accuracy over C and D (0.9291 to
0.9600 for CF and 0.9266 to 0.9561 for DF).
These results suggest that our committee-based
scheme does work even if the most competent
member of a committee is rule-based and thus
non-parametric.

5 Conclusion
This paper presented a general committee-

based framework that can be coupled with prob-
abilistic partial parsing. In this framework, a
committee accepts parametric multiple votes,
and then standardizes them, and �nally pro-
vides a probabilistic distribution. We presented
a general method for producing probabilistic
multiple votes (i.e. DP matrices), which al-
lows most of the existing probabilistic models
for parsing to join a committee. Our experi-
ments revealed that (a) if more than two compa-
rably competent models are available, it is likely
to be worthwhile to combine them, (b) both
multiple voting and vote standardization e�ec-
tively work in committee-based partial parsing,
(c) our scheme also allows a non-parametric
rule-based parser to make a good contribution.

7[note for revision] Again, 0.8725 is the total accuracy
achieved by KNP with an unnecessary experimental op-
tion setting wrongly speci�ed in execution.

While our experiments have so far been produc-
ing promising results, there seems to be much
room left for investigation and improvement.
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